Sequential recommendation is often considered as a generative task, i.e., training a sequential encoder to generate the next item of a user's interests based on her historical interacted items. Despite their prevalence, these methods usually require training with more meaningful samples to be effective, which otherwise will lead to a poorly trained model. In this work, we propose to train the sequential recommenders as discriminators rather than generators. Instead of predicting the next item, our method trains a discriminator to distinguish if a sampled item is a 'real' target item or not. A generator, as an auxiliary model, is trained jointly with the discriminator to sample plausible alternative next items and will be thrown out after training. The trained discriminator is considered as the final SR model and denoted as \modelname. Experiments conducted on four datasets demonstrate the effectiveness and efficiency of the proposed approach.


翻译:顺序建议通常被视为一种基因任务,即培训一个顺序编码器,根据用户的历史互动项目产生下一个用户利益项目。尽管这些方法很普遍,但通常需要经过更有意义的样本培训才能有效,否则将导致一个训练不良的模式。在这项工作中,我们提议将顺序建议者培训为歧视者而不是产生者。我们的方法不是预测下一个项目,而是训练一个歧视者,以区分抽样项目是否为“真实”目标项目。一个发电机作为辅助模型,与歧视者共同培训,以采样可行的下一个项目,并在培训后将其推出。受过培训的歧视问题被视为最后的SR模型,并被称作\ 模范名称。在四个数据集上进行的实验显示了拟议方法的有效性和效率。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Cold-start Sequential Recommendation via Meta Learner
Arxiv
15+阅读 · 2020年12月10日
VIP会员
相关VIP内容
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员