In this paper, we focus on the finite difference approximation of nonlinear degenerate parabolic equations, a special class of parabolic equations where the viscous term vanishes in certain regions. This vanishing gives rise to additional challenges in capturing sharp fronts, beyond the restrictive CFL conditions commonly encountered with explicit time discretization in parabolic equations. To resolve the sharp front, we adopt the high-order multi-resolution alternative finite difference WENO (A-WENO) methods for the spatial discretization. To alleviate the time step restriction from the nonlinear stiff diffusion terms, we employ the exponential time differencing Runge-Kutta (ETD-RK) methods, a class of efficient and accurate exponential integrators, for the time discretization. However, for highly nonlinear spatial discretizations such as high-order WENO schemes, it is a challenging problem how to efficiently form the linear stiff part in applying the exponential integrators, since direct computation of a Jacobian matrix for high-order WENO discretizations of the nonlinear diffusion terms is very complicated and expensive. Here we propose a novel and effective approach of replacing the exact Jacobian of high-order multi-resolution A-WENO scheme with that of the corresponding high-order linear scheme in the ETD-RK time marching, based on the fact that in smooth regions the nonlinear weights closely approximate the optimal linear weights, while in non-smooth regions the stiff diffusion degenerates. The algorithm is described in detail, and numerous numerical experiments are conducted to demonstrate the effectiveness of such a treatment and the good performance of our method. The stiffness of the nonlinear parabolic partial differential equations (PDEs) is resolved well, and large time-step size computations are achieved.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
Optimization for deep learning: theory and algorithms
Arxiv
106+阅读 · 2019年12月19日
VIP会员
相关VIP内容
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员