Anomaly recognition plays a vital role in surveillance, transportation, healthcare, and public safety. However, most existing approaches rely solely on visual data, making them unreliable under challenging conditions such as occlusion, low illumination, and adverse weather. Moreover, the absence of large-scale synchronized audio-visual datasets has hindered progress in multimodal anomaly recognition. To address these limitations, this study presents AVAR-Net, a lightweight and efficient audio-visual anomaly recognition framework designed for real-world environments. AVAR-Net consists of four main modules: an audio feature extractor, a video feature extractor, fusion strategy, and a sequential pattern learning network that models cross-modal relationships for anomaly recognition. Specifically, the Wav2Vec2 model extracts robust temporal features from raw audio, while MobileViT captures both local and global visual representations from video frames. An early fusion mechanism combines these modalities, and a Multi-Stage Temporal Convolutional Network (MTCN) model that learns long-range temporal dependencies within the fused representation, enabling robust spatiotemporal reasoning. A novel Visual-Audio Anomaly Recognition (VAAR) dataset, is also introduced, serving as a medium-scale benchmark containing 3,000 real-world videos with synchronized audio across ten diverse anomaly classes. Experimental evaluations demonstrate that AVAR-Net achieves 89.29% accuracy on VAAR and 88.56% Average Precision on the XD-Violence dataset, improving Average Precision by 2.8% over existing state-of-the-art methods. These results highlight the effectiveness, efficiency, and generalization capability of the proposed framework, as well as the utility of VAAR as a benchmark for advancing multimodal anomaly recognition research.


翻译:暂无翻译

0
下载
关闭预览

相关内容

数据集,又称为资料集、数据集合或资料集合,是一种由数据所组成的集合。
Data set(或dataset)是一个数据的集合,通常以表格形式出现。每一列代表一个特定变量。每一行都对应于某一成员的数据集的问题。它列出的价值观为每一个变量,如身高和体重的一个物体或价值的随机数。每个数值被称为数据资料。对应于行数,该数据集的数据可能包括一个或多个成员。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
17+阅读 · 2023年12月4日
Arxiv
12+阅读 · 2021年6月21日
Arxiv
14+阅读 · 2018年4月6日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员