We study parameterized and approximation algorithms for a variant of Set Cover, where the universe of elements to be covered consists of points in the plane and the sets with which the points should be covered are segments. We call this problem Segment Set Cover. We also consider a relaxation of the problem called $\delta$-extension, where we need to cover the points by segments that are extended by a tiny fraction, but we compare the solution's quality to the optimum without extension. For the unparameterized variant, we prove that Segment Set Cover does not admit a PTAS unless $\mathsf{P}=\mathsf{NP}$, even if we restrict segments to be axis-parallel and allow $\frac{1}{2}$-extension. On the other hand, we show that parameterization helps for the tractability of Segment Set Cover: we give an FPT algorithm for unweighted Segment Set Cover parameterized by the solution size $k$, a parameterized approximation scheme for Weighted Segment Set Cover with $k$ being the parameter, and an FPT algorithm for Weighted Segment Set Cover with $\delta$-extension parameterized by $k$ and $\delta$. In the last two results, relaxing the problem is probably necessary: we prove that Weighted Segment Set Cover without any relaxation is $\mathsf{W}[1]$-hard and, assuming ETH, there does not exist an algorithm running in time $f(k)\cdot n^{o(k / \log k)}$. This holds even if one restricts attention to axis-parallel segments.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
A survey on deep hashing for image retrieval
Arxiv
15+阅读 · 2020年6月10日
VIP会员
相关VIP内容
相关资讯
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员