In a work by Raz (J. ACM and FOCS 16), it was proved that any algorithm for parity learning on $n$ bits requires either $\Omega(n^2)$ bits of classical memory or an exponential number (in~$n$) of random samples. A line of recent works continued that research direction and showed that for a large collection of classical learning tasks, either super-linear classical memory size or super-polynomially many samples are needed. However, these results do not capture all physical computational models, remarkably, quantum computers and the use of quantum memory. It leaves the possibility that a small piece of quantum memory could significantly reduce the need for classical memory or samples and thus completely change the nature of the classical learning task. In this work, we prove that any quantum algorithm with both, classical memory and quantum memory, for parity learning on $n$ bits, requires either $\Omega(n^2)$ bits of classical memory or $\Omega(n)$ bits of quantum memory or an exponential number of samples. In other words, the memory-sample lower bound for parity learning remains qualitatively the same, even if the learning algorithm can use, in addition to the classical memory, a quantum memory of size $c n$ (for some constant $c>0$). Our results refute the possibility that a small amount of quantum memory significantly reduces the size of classical memory needed for efficient learning on these problems. Our results also imply improved security of several existing cryptographical protocols in the bounded-storage model (protocols that are based on parity learning on $n$ bits), proving that security holds even in the presence of a quantum adversary with at most $c n^2$ bits of classical memory and $c n$ bits of quantum memory (for some constant $c>0$).


翻译:在Raz (J. ACM 和 FOCS 16) 的一篇文章中,事实证明,任何以美元位数进行等同学习的算法,只要0元位数的计算模型、显著的量子计算机和使用量子内存,就有可能需要一小块量子内存大大减少对古典记忆或随机样本的需求,或者需要以美元位数进行大量古典学习任务,或者需要超线古典内存大小或超球体积样本。然而,这些结果并不包含所有物理计算模型、显著的量子计算机和量子内存的使用情况。这让小块量子内存大大减少对古典内存或样本的需求,从而可能大大减少对古典内存或样本的需求,从而彻底改变古典学习任务的性质。 在这项工作中,任何带有古典内存和量内存的量值的量值计算方法,只要以美元进行等值学习,则需要以美元位内存的内存的内存价值内存为等值。</s>

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
10+阅读 · 2021年11月3日
VIP会员
相关VIP内容
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员