Learning to generate diverse scene-aware and goal-oriented human motions in 3D scenes remains challenging due to the mediocre characteristics of the existing datasets on Human-Scene Interaction (HSI); they only have limited scale/quality and lack semantics. To fill in the gap, we propose a large-scale and semantic-rich synthetic HSI dataset, denoted as HUMANISE, by aligning the captured human motion sequences with various 3D indoor scenes. We automatically annotate the aligned motions with language descriptions that depict the action and the unique interacting objects in the scene; e.g., sit on the armchair near the desk. HUMANISE thus enables a new generation task, language-conditioned human motion generation in 3D scenes. The proposed task is challenging as it requires joint modeling of the 3D scene, human motion, and natural language. To tackle this task, we present a novel scene-and-language conditioned generative model that can produce 3D human motions of the desirable action interacting with the specified objects. Our experiments demonstrate that our model generates diverse and semantically consistent human motions in 3D scenes.


翻译:在3D场景中学习产生多样的景象感知和面向目标的人类运动仍然具有挑战性,因为现有的人类-系统互动(HISI)数据集具有平庸的特点;它们的规模/质量有限,缺乏语义。为了填补这一空白,我们建议采用一个大规模和语义丰富的合成HSI合成数据集,称为HIVISE,将所捕捉到的人类运动序列与各种3D室内场景相匹配。我们自动注意到与描述动作和独特互动对象的语言描述相一致的运动;例如,坐在办公桌旁的扶轮椅上。HIVISE因此使得新一代的任务得以在3D场景中产生以语言为条件的人类运动。拟议的任务具有挑战性,因为它需要联合建模3D场景、人类运动和自然语言。为了应对这项任务,我们提出了一个新型的场景和语言条件的基因化模型,可以产生3D人运动的3D运动,与指定对象相互作用。我们的实验表明,我们的模型在3D场景场景中产生多样化和具有逻辑一致性的人类运动。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员