In real-world scenarios, speech signals are inevitably corrupted by various types of interference, making speech enhancement (SE) a critical task for robust speech processing. However, most existing SE methods only handle a limited range of distortions, such as additive noise, reverberation, or band limitation, while the study of SE under multiple simultaneous distortions remains limited. This gap affects the generalization and practical usability of SE methods in real-world environments.To address this gap, this paper proposes a novel Universal Discrete-domain SE model called UDSE.Unlike regression-based SE models that directly predict clean speech waveform or continuous features, UDSE redefines SE as a discrete-domain classification task, instead predicting the clean discrete tokens quantized by the residual vector quantizer (RVQ) of a pre-trained neural speech codec.Specifically, UDSE first extracts global features from the degraded speech. Guided by these global features, the clean token prediction for each VQ follows the rules of RVQ, where the prediction of each VQ relies on the results of the preceding ones. Finally, the predicted clean tokens from all VQs are decoded to reconstruct the clean speech waveform. During training, the UDSE model employs a teacher-forcing strategy, and is optimized with cross-entropy loss. Experimental results confirm that the proposed UDSE model can effectively enhance speech degraded by various conventional and unconventional distortions, e.g., additive noise, reverberation, band limitation, clipping, phase distortion, and compression distortion, as well as their combinations. These results demonstrate the superior universality and practicality of UDSE compared to advanced regression-based SE methods.


翻译:暂无翻译

0
下载
关闭预览

相关内容

人类接受高层次教育、进行原创性研究的场所。 现在的大学一般包括一个能授予硕士和博士学位的研究生院和数个专业学院,以及能授予学士学位的一个本科生院。大学还包括高等专科学校
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员