In language tasks that require extensive human--model interaction, deploying a single "best" model for every query can be expensive. To reduce inference cost while preserving the quality of the responses, a large language model (LLM) router selects the most appropriate model from a pool of candidates for each query. A central challenge to training a high-quality router is the scarcity of reliable supervision. Gold-standard data (e.g., expert-verified labels or rubric-based scores) provide accurate quality evaluations of LLM responses but are costly and difficult to scale. In contrast, preference-based data, collected via crowdsourcing or LLM-as-a-judge systems, are cheaper and more scalable, yet often biased in reflecting the true quality of responses. We cast the problem of LLM router training with combined gold-standard and preference-based data into a causal inference framework by viewing the response evaluation mechanism as the treatment assignment. This perspective further reveals that the bias in preference-based data corresponds to the well-known causal estimand: the conditional average treatment effect. Based on this new perspective, we develop an integrative causal router training framework that corrects preference-data bias, address imbalances between two data sources, and improve routing robustness and efficiency. Numerical experiments demonstrate that our approach delivers more accurate routing and improves the trade-off between cost and quality.
翻译:暂无翻译