Numerical resolution of high-dimensional nonlinear PDEs remains a huge challenge due to the curse of dimensionality. Starting from the weak formulation of the Lawson-Euler scheme, this paper proposes a stochastic particle method (SPM) by tracking the deterministic motion, random jump, resampling and reweighting of particles. Real-valued weighted particles are adopted by SPM to approximate the high-dimensional solution, which automatically adjusts the point distribution to intimate the relevant feature of the solution. A piecewise constant reconstruction with virtual uniform grid is employed to evaluate the nonlinear terms, which fully exploits the intrinsic adaptive characteristic of SPM. Combining both can SPM achieve the goal of adaptive sampling in time. Numerical experiments on the 6-D Allen-Cahn equation and the 7-D Hamiltonian-Jacobi-Bellman equation demonstrate the potential of SPM in solving high-dimensional nonlinear PDEs efficiently while maintaining an acceptable accuracy.


翻译:暂无翻译

0
下载
关闭预览

相关内容

实体和物理建模讨论会(SPM)是国际会议系列,每年在实体建模协会(SMA),ACM SIGGRAPH和SIAM几何设计活动组的支持下举办。该会议的重点是几何和物理建模的各个方面,以及它们在设计、分析和制造以及生物医学、地球物理、数字娱乐和其他领域中的应用。该、 官网地址:http://dblp.uni-trier.de/db/conf/sma/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年12月15日
Arxiv
0+阅读 · 2023年12月14日
Arxiv
0+阅读 · 2023年12月13日
Arxiv
16+阅读 · 2022年5月17日
VIP会员
相关VIP内容
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
相关论文
Arxiv
0+阅读 · 2023年12月15日
Arxiv
0+阅读 · 2023年12月14日
Arxiv
0+阅读 · 2023年12月13日
Arxiv
16+阅读 · 2022年5月17日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员