This search introduces the Multimodal Socialized Learning Framework (M-S2L), designed to foster emergent social intelligence in AI agents by integrating Multimodal Large Language Models (M-LLMs) with social learning mechanisms. The framework equips agents with multimodal perception (vision and text) and structured action capabilities, enabling physical manipulation and grounded multimodal communication (e.g., text with visual pointers). M-S2L combines direct reinforcement learning with two novel social learning pathways: multimodal observational learning and communication-driven learning from feedback, augmented by an episodic memory system for long-term social context. We evaluate M-S2L in a Collaborative Assembly Environment (CAE), where agent teams must construct complex devices from ambiguous blueprints under informational asymmetry. Across tasks of increasing complexity, M-S2L agents consistently outperform Text-Only and No-Social-Learning baselines in Task Completion Rate and Time to Completion, particularly in dynamic problem-solving scenarios. Ablation studies confirm the necessity of both multimodality and socialized learning. Our analysis reveals the emergence of efficient communication protocols integrating visual pointers with concise text, alongside rapid role specialization leading to stable labor division. Qualitative case studies demonstrate agents' abilities for shared awareness, dynamic re-planning, and adaptive problem-solving, suggesting a nascent form of machine social cognition. These findings indicate that integrating multimodal perception with explicit social learning is critical for developing human-like collaborative intelligence in multi-agent systems.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 12月16日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员