In this paper we consider the generalized Radon transform $\mathcal R$ in the plane. Let $f$ be a piecewise smooth function, which has a jump across a smooth, convex curve $\mathcal S$. We obtain a precise, quantitative formula describing view aliasing artifacts when $f$ is reconstructed from the data $\mathcal R f$ discretized in the view direction. The formula is asymptotic, it is established in the limit as the sampling rate $\epsilon\to0$. The proposed approach does not require that $f$ be band-limited. Numerical experiments with the classical Radon transform and generalized Radon transform (which integrates over circles) demonstrate the accuracy of the formula.


翻译:在本文中, 我们考虑通用的雷达转换 $\ mathcal R$ 在平面上 。 让 $f 是一个小块平滑的函数, 它可以跳过一个平滑的、 comvex 曲线 $\ mathcal S$ 。 当用 $\ mathcal R f$ 在视图方向上分解的数据重建 $\ mathcal R f$ 时, 我们获得一个精确的量化公式, 描述外观文物的化名 。 公式是零调的, 以采样率 $\ epsilon\ to $ 设定在限度内 。 提议的方法并不要求用 $f 来限制带 。 古典的 Radon 变形和 普通的 Radon 变形( 集成圆形) 的数值实验显示了公式的准确性 。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员