The use of momentum in stochastic optimization algorithms has shown empirical success across a range of machine learning tasks. Recently, a new class of stochastic momentum algorithms has emerged within the Linear Minimization Oracle (LMO) framework--leading to state-of-the-art methods, such as Muon, Scion, and Gluon, that effectively solve deep neural network training problems. However, traditional stochastic momentum methods offer convergence guarantees no better than the ${O}(1/K^{1/4})$ rate. While several approaches--such as Hessian-Corrected Momentum (HCM)--have aimed to improve this rate, their theoretical results are generally restricted to the Euclidean norm setting. This limitation hinders their applicability in problems, where arbitrary norms are often required. In this paper, we extend the LMO-based framework by integrating HCM, and provide convergence guarantees under relaxed smoothness and arbitrary norm settings. We establish improved convergence rates of ${O}(1/K^{1/3})$ for HCM, which can adapt to the geometry of the problem and achieve a faster rate than traditional momentum. Experimental results on training Multi-Layer Perceptrons (MLPs) and Long Short-Term Memory (LSTM) networks verify our theoretical observations.


翻译:动量技术在随机优化算法中的应用已在多种机器学习任务中展现出实证优势。近期,基于线性最小化预言机框架的新型随机动量算法类别逐渐兴起,催生了诸如Muon、Scion和Gluon等前沿方法,这些方法能有效解决深度神经网络训练问题。然而,传统随机动量方法仅能保证${O}(1/K^{1/4})$阶的收敛速率。尽管已有若干改进方案——如海森修正动量法——试图提升该速率,但其理论成果通常局限于欧几里得范数设定,这一限制阻碍了其在需要任意范数的问题场景中的应用。本文通过将海森修正动量法整合至线性最小化预言机框架,在放宽光滑性要求与任意范数设定下给出了收敛性保证。我们证明了海森修正动量法可达${O}(1/K^{1/3})$阶的改进收敛速率,该方法能自适应问题几何结构,且收敛速度优于传统动量法。在多层感知机与长短期记忆网络的训练实验中,实验结果验证了我们的理论发现。

0
下载
关闭预览

相关内容

动量方法 (Polyak, 1964) 旨在加速学习,特别是处理高曲率、小但一致的梯度,或是带噪声的梯度。 动量算法积累了之前梯度指数级衰减的移动平均,并且继续沿该方向移动。
[ICML2024]消除偏差:微调基础模型以进行半监督学习
专知会员服务
17+阅读 · 2024年5月23日
【AAAI2023】基于Dirichlet元模型的事后不确定性学习
专知会员服务
16+阅读 · 2022年12月16日
【CVPR 2020 Oral】小样本类增量学习
专知
20+阅读 · 2020年6月26日
使用 Keras Tuner 调节超参数
TensorFlow
15+阅读 · 2020年2月6日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
MNIST入门:贝叶斯方法
Python程序员
23+阅读 · 2017年7月3日
国家自然科学基金
17+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
16+阅读 · 2013年12月31日
VIP会员
相关资讯
【CVPR 2020 Oral】小样本类增量学习
专知
20+阅读 · 2020年6月26日
使用 Keras Tuner 调节超参数
TensorFlow
15+阅读 · 2020年2月6日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
MNIST入门:贝叶斯方法
Python程序员
23+阅读 · 2017年7月3日
相关基金
国家自然科学基金
17+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
16+阅读 · 2013年12月31日
Top
微信扫码咨询专知VIP会员