Controlling Unmanned Aerial Vehicles (UAVs) is a cognitively demanding task, with accidents often arising from insufficient situational awareness, inadequate training, and poor user experiences. Providing more intuitive and immersive visual feedback, particularly through Digital Twin technologies, offers new opportunities to enhance pilot awareness and overall experience quality. In this study, we investigate how different virtual points of view (POVs) influence user experience and performance during UAV piloting in Virtual Reality (VR), utilizing a digital twin that faithfully replicates the real-world flight environment. We developed a VR application that enables participants to control a physical DJI Mini 4 Pro drone while immersed in a digital twin with four distinct camera perspectives: Baseline View (static external), First-Person View, Chase View, and Third-Person View. Nineteen participants completed a series of ring-based obstacle courses from each perspective. In addition to objective flight data, we collected standardized subjective assessments of user experience, presence, workload, cybersickness, and situational awareness. Quantitative analyses revealed that the First-Person View was associated with significantly higher mental demand and effort, greater trajectory deviation, but smoother control inputs compared to the Third-Person and Chase perspectives. Complementing these findings, preference data indicated that the Third-Person View was most consistently favored, whereas the First-Person View elicited polarized reactions.
翻译:暂无翻译