The large-scale pretrained model CLIP, trained on 400 million image-text pairs, offers a promising paradigm for tackling vision tasks, albeit at the image level. Later works, such as DenseCLIP and LSeg, extend this paradigm to dense prediction, including semantic segmentation, and have achieved excellent results. However, the above methods either rely on CLIP-pretrained visual backbones or use none-pretrained but heavy backbones such as Swin, while falling ineffective when applied to lightweight backbones. The reason for this is that the lightweitht networks, feature extraction ability of which are relatively limited, meet difficulty embedding the image feature aligned with text embeddings perfectly. In this work, we present a new feature fusion module which tackles this problem and enables language-guided paradigm to be applied to lightweight networks. Specifically, the module is a parallel design of CNN and transformer with a two-way bridge in between, where CNN extracts spatial information and visual context of the feature map from the image encoder, and the transformer propagates text embeddings from the text encoder forward. The core of the module is the bidirectional fusion of visual and text feature across the bridge which prompts their proximity and alignment in embedding space. The module is model-agnostic, which can not only make language-guided lightweight semantic segmentation practical, but also fully exploit the pretrained knowledge of language priors and achieve better performance than previous SOTA work, such as DenseCLIP, whatever the vision backbone is. Extensive experiments have been conducted to demonstrate the superiority of our method.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年11月24日
Arxiv
76+阅读 · 2022年3月26日
Arxiv
12+阅读 · 2020年12月10日
Learning Implicit Fields for Generative Shape Modeling
Arxiv
11+阅读 · 2018年12月6日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
0+阅读 · 2023年11月24日
Arxiv
76+阅读 · 2022年3月26日
Arxiv
12+阅读 · 2020年12月10日
Learning Implicit Fields for Generative Shape Modeling
Arxiv
11+阅读 · 2018年12月6日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员