We prove tight bounds on the site percolation threshold for $k$-uniform hypergraphs of maximum degree $\Delta$ and for $k$-uniform hypergraphs of maximum degree $\Delta$ in which any pair of edges overlaps in at most $r$ vertices. The hypergraphs that achieve these bounds are hypertrees, but unlike in the case of graphs, there are many different $k$-uniform, $\Delta$-regular hypertrees. Determining the extremal tree for a given $k, \Delta, r$ involves an optimization problem, and our bounds arise from a convex relaxation of this problem. By combining our percolation bounds with the method of disagreement percolation we obtain improved bounds on the uniqueness threshold for the hard-core model on hypergraphs satisfying the same constraints. Our uniqueness conditions imply exponential weak spatial mixing, and go beyond the known bounds for rapid mixing of local Markov chains and existence of efficient approximate counting and sampling algorithms. Our results lead to natural conjectures regarding the aforementioned algorithmic tasks, based on the intuition that uniqueness thresholds for the extremal hypertrees for percolation determine computational thresholds.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年11月6日
Arxiv
0+阅读 · 2023年11月3日
VIP会员
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员