Most studies on word-level Quality Estimation (QE) of machine translation focus on language-specific models. The obvious disadvantages of these approaches are the need for labelled data for each language pair and the high cost required to maintain several language-specific models. To overcome these problems, we explore different approaches to multilingual, word-level QE. We show that these QE models perform on par with the current language-specific models. In the cases of zero-shot and few-shot QE, we demonstrate that it is possible to accurately predict word-level quality for any given new language pair from models trained on other language pairs. Our findings suggest that the word-level QE models based on powerful pre-trained transformers that we propose in this paper generalise well across languages, making them more useful in real-world scenarios.


翻译:多数关于机器翻译的字级质量估计(QE)的研究侧重于特定语言模式,这些方法的明显缺点是需要每种语言配对的贴标签数据,以及维持若干特定语言模式所需的高成本。为了解决这些问题,我们探索了多种语言、字级质量评估的不同方法。我们表明,这些质量评估模式与当前特定语言模式的表现相当。在零点和微点的QE中,我们证明,从其他语言配对培训的模型中准确地预测任何特定新语言配对的字级质量是可能的。我们的调查结果表明,基于我们在本文件中建议的强力、经过培训的变压器的字级质量模型非常概括各种语言,使其在现实世界情景中更加有用。

0
下载
关闭预览

相关内容

Transformer文本分类代码
专知会员服务
118+阅读 · 2020年2月3日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
Arxiv
3+阅读 · 2017年12月18日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
Top
微信扫码咨询专知VIP会员