We present a comprehensive study on discrete morphological symmetries of dynamical systems, which are commonly observed in biological and artificial locomoting systems, such as legged, swimming, and flying animals/robots/virtual characters. These symmetries arise from the presence of one or more planes/axis of symmetry in the system's morphology, resulting in harmonious duplication and distribution of body parts. Significantly, we characterize how morphological symmetries extend to symmetries in the system's dynamics, optimal control policies, and in all proprioceptive and exteroceptive measurements related to the system's dynamics evolution. In the context of data-driven methods, symmetry represents an inductive bias that justifies the use of data augmentation or symmetric function approximators. To tackle this, we present a theoretical and practical framework for identifying the system's morphological symmetry group $\G$ and characterizing the symmetries in proprioceptive and exteroceptive data measurements. We then exploit these symmetries using data augmentation and $\G$-equivariant neural networks. Our experiments on both synthetic and real-world applications provide empirical evidence of the advantageous outcomes resulting from the exploitation of these symmetries, including improved sample efficiency, enhanced generalization, and reduction of trainable parameters.


翻译:暂无翻译

0
下载
关闭预览

相关内容

机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年7月6日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员