In contrast to traditional image restoration methods, all-in-one image restoration techniques are gaining increased attention for their ability to restore images affected by diverse and unknown corruption types and levels. However, contemporary all-in-one image restoration methods omit task-wise difficulties and employ the same networks to reconstruct images afflicted by diverse degradations. This practice leads to an underestimation of the task correlations and suboptimal allocation of computational resources. To elucidate task-wise complexities, we introduce a novel concept positing that intricate image degradation can be represented in terms of elementary degradation. Building upon this foundation, we propose an innovative approach, termed the Unified-Width Adaptive Dynamic Network (U-WADN), consisting of two pivotal components: a Width Adaptive Backbone (WAB) and a Width Selector (WS). The WAB incorporates several nested sub-networks with varying widths, which facilitates the selection of the most apt computations tailored to each task, thereby striking a balance between accuracy and computational efficiency during runtime. For different inputs, the WS automatically selects the most appropriate sub-network width, taking into account both task-specific and sample-specific complexities. Extensive experiments across a variety of image restoration tasks demonstrate that the proposed U-WADN achieves better performance while simultaneously reducing up to 32.3\% of FLOPs and providing approximately 15.7\% real-time acceleration. The code has been made available at \url{https://github.com/xuyimin0926/U-WADN}.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员