Emergent language is unique among fields within the discipline of machine learning for its open-endedness, not obviously presenting well-defined problems to be solved. As a result, the current research in the field has largely been exploratory: focusing on establishing new problems, techniques, and phenomena. Yet after these problems have been established, subsequent progress requires research which can measurably demonstrate how it improves on prior approaches. This type of research is what we call systematic research; in this paper, we illustrate this mode of research specifically for emergent language. We first identify the overarching goals of emergent language research, categorizing them as either science or engineering. Using this distinction, we present core methodological elements of science and engineering, analyze their role in current emergent language research, and recommend how to apply these elements.


翻译:在机器学习学科中,新兴语言因其开放性而具有独特性,显然没有提出需要解决的明确界定的问题。因此,目前这一领域的研究基本上是探索性的:侧重于建立新的问题、技术和现象。然而,在这些问题确定之后,随后的进展需要研究,以可计量的方式表明它如何改进先前的方法。这类研究是我们称之为系统研究的;在本文件中,我们专门为新兴语言说明这种研究模式。我们首先确定新兴语言研究的总体目标,将其分为科学或工程类。我们通过这种区分,提出科学和工程的核心方法要素,分析它们在当前新兴语言研究中的作用,并就如何应用这些要素提出建议。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
126+阅读 · 2020年9月6日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关论文
Arxiv
126+阅读 · 2020年9月6日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员