Recommendation systems capable of providing diverse sets of results are a focus of increasing importance, with motivations ranging from fairness to novelty and other aspects of optimizing user experience. One form of diversity of recent interest is calibration, the notion that personalized recommendations should reflect the full distribution of a user's interests, rather than a single predominant category -- for instance, a user who mainly reads entertainment news but also wants to keep up with news on the environment and the economy would prefer to see a mixture of these genres, not solely entertainment news. Existing work has formulated calibration as a subset selection problem; this line of work observes that the formulation requires the unrealistic assumption that all recommended items receive equal consideration from the user, but leaves as an open question the more realistic setting in which user attention decays as they move down the list of results. In this paper, we consider calibration with decaying user attention under two different models. In both models, there is a set of underlying genres that items can belong to. In the first setting, where items are represented by fine-grained mixtures of genre percentages, we provide a $(1-1/e)$-approximation algorithm by extending techniques for constrained submodular optimization. In the second setting, where items are coarsely binned into a single genre each, we surpass the $(1-1/e)$ barrier imposed by submodular maximization and give a $2/3$-approximate greedy algorithm. Our work thus addresses the problem of capturing ordering effects due to decaying attention, allowing for the extension of near-optimal calibration from recommendation sets to recommendation lists.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员