Membership queries (MQ) often yield speedups for learning tasks, particularly in the distribution-specific setting. We show that in the \emph{testable learning} model of Rubinfeld and Vasilyan [RV23], membership queries cannot decrease the time complexity of testable learning algorithms beyond the complexity of sample-only distribution-specific learning. In the testable learning model, the learner must output a hypothesis whenever the data distribution satisfies a desired property, and if it outputs a hypothesis, the hypothesis must be near-optimal. We give a general reduction from sample-based \emph{refutation} of boolean concept classes, as presented in [Vadhan17, KL18], to testable learning with queries (TL-Q). This yields lower bounds for TL-Q via the reduction from learning to refutation given in [KL18]. The result is that, relative to a concept class and a distribution family, no $m$-sample TL-Q algorithm can be super-polynomially more time-efficient than the best $m$-sample PAC learner. Finally, we define a class of ``statistical'' MQ algorithms that encompasses many known distribution-specific MQ learners, such as those based on influence estimation or subcube-conditional statistical queries. We show that TL-Q algorithms in this class imply efficient statistical-query refutation and learning algorithms. Thus, combined with known SQ dimension lower bounds, our results imply that these efficient membership query learners cannot be made testable.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
19+阅读 · 2022年7月29日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员