One of the central quantities of probabilistic seismic risk assessment studies is the fragility curve, which represents the probability of failure of a mechanical structure conditional on a scalar measure derived from the seismic ground motion. Estimating such curves is a difficult task because, for many structures of interest, few data are available and the data are only binary; i.e., they indicate the state of the structure, failure or non-failure. This framework concerns complex equipments such as electrical devices encountered in industrial installations. In order to address this challenging framework a wide range of the methods in the literature rely on a parametric log-normal model. Bayesian approaches allow for efficient learning of the model parameters. However, the choice of the prior distribution has a non-negligible influence on the posterior distribution and, therefore, on any resulting estimate. We propose a thorough study of this parametric Bayesian estimation problem when the data are limited and binary. Using the reference prior theory as a support, we suggest an objective approach for the prior choice. This approach leads to the Jeffreys prior which is explicitly derived for this problem for the first time. The posterior distribution is proven to be proper (i.e., it integrates to unity) with the Jeffreys prior and improper with some classical priors from the literature. The posterior distribution with the Jeffreys prior is also shown to vanish at the boundaries of the parameters domain, so sampling the posterior distribution of the parameters does not produce anomalously small or large values. Therefore, this does not produce degenerate fragility curves such as unit-step functions and the Jeffreys prior leads to robust credibility intervals. The numerical results obtained on two different case studies, including an industrial case, illustrate the theoretical predictions.


翻译:暂无翻译

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年3月11日
VIP会员
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员