Audio-visual video recognition (AVVR) aims to integrate audio and visual clues to categorize videos accurately. While existing methods train AVVR models using provided datasets and achieve satisfactory results, they struggle to retain historical class knowledge when confronted with new classes in real-world situations. Currently, there are no dedicated methods for addressing this problem, so this paper concentrates on exploring Class Incremental Audio-Visual Video Recognition (CIAVVR). For CIAVVR, since both stored data and learned model of past classes contain historical knowledge, the core challenge is how to capture past data knowledge and past model knowledge to prevent catastrophic forgetting. We introduce Hierarchical Augmentation and Distillation (HAD), which comprises the Hierarchical Augmentation Module (HAM) and Hierarchical Distillation Module (HDM) to efficiently utilize the hierarchical structure of data and models, respectively. Specifically, HAM implements a novel augmentation strategy, segmental feature augmentation, to preserve hierarchical model knowledge. Meanwhile, HDM introduces newly designed hierarchical (video-distribution) logical distillation and hierarchical (snippet-video) correlative distillation to capture and maintain the hierarchical intra-sample knowledge of each data and the hierarchical inter-sample knowledge between data, respectively. Evaluations on four benchmarks (AVE, AVK-100, AVK-200, and AVK-400) demonstrate that the proposed HAD effectively captures hierarchical information in both data and models, resulting in better preservation of historical class knowledge and improved performance. Furthermore, we provide a theoretical analysis to support the necessity of the segmental feature augmentation strategy.


翻译:暂无翻译

0
下载
关闭预览

相关内容

通过学习、实践或探索所获得的认识、判断或技能。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Learning Embedding Adaptation for Few-Shot Learning
Arxiv
17+阅读 · 2018年12月10日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员