The Machine Learning as a Service (MLaaS) market is rapidly expanding and becoming more mature. For example, OpenAI's ChatGPT is an advanced large language model (LLM) that generates responses for various queries with associated fees. Although these models can deliver satisfactory performance, they are far from perfect. Researchers have long studied the vulnerabilities and limitations of LLMs, such as adversarial attacks and model toxicity. Inevitably, commercial ML models are also not exempt from such issues, which can be problematic as MLaaS continues to grow. In this paper, we discover a new attack strategy against LLM APIs, namely the prompt abstraction attack. Specifically, we propose Mondrian, a simple and straightforward method that abstracts sentences, which can lower the cost of using LLM APIs. In this approach, the adversary first creates a pseudo API (with a lower established price) to serve as the proxy of the target API (with a higher established price). Next, the pseudo API leverages Mondrian to modify the user query, obtain the abstracted response from the target API, and forward it back to the end user. Our results show that Mondrian successfully reduces user queries' token length ranging from 13% to 23% across various tasks, including text classification, generation, and question answering. Meanwhile, these abstracted queries do not significantly affect the utility of task-specific and general language models like ChatGPT. Mondrian also reduces instruction prompts' token length by at least 11% without compromising output quality. As a result, the prompt abstraction attack enables the adversary to profit without bearing the cost of API development and deployment.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年9月23日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员