Lane detection is to determine the precise location and shape of lanes on the road. Despite efforts made by current methods, it remains a challenging task due to the complexity of real-world scenarios. Existing approaches, whether proposal-based or keypoint-based, suffer from depicting lanes effectively and efficiently. Proposal-based methods detect lanes by distinguishing and regressing a collection of proposals in a streamlined top-down way, yet lack sufficient flexibility in lane representation. Keypoint-based methods, on the other hand, construct lanes flexibly from local descriptors, which typically entail complicated post-processing. In this paper, we present a "Sketch-and-Refine" paradigm that utilizes the merits of both keypoint-based and proposal-based methods. The motivation is that local directions of lanes are semantically simple and clear. At the "Sketch" stage, local directions of keypoints can be easily estimated by fast convolutional layers. Then we can build a set of lane proposals accordingly with moderate accuracy. At the "Refine" stage, we further optimize these proposals via a novel Lane Segment Association Module (LSAM), which allows adaptive lane segment adjustment. Last but not least, we propose multi-level feature integration to enrich lane feature representations more efficiently. Based on the proposed "Sketch and Refine" paradigm, we propose a fast yet effective lane detector dubbed "SRLane". Experiments show that our SRLane can run at a fast speed (i.e., 278 FPS) while yielding an F1 score of 78.9\%. The source code is available at: https://github.com/passerer/SRLane.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FAST:Conference on File and Storage Technologies。 Explanation:文件和存储技术会议。 Publisher:USENIX。 SIT:http://dblp.uni-trier.de/db/conf/fast/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年3月8日
Blockchain and Carbon Markets: Standards Overview
Arxiv
0+阅读 · 2024年3月6日
Arxiv
13+阅读 · 2022年4月30日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员