Efficient and quick remote communication in search and rescue operations can be life-saving for the first responders. However, while operating on the field means of communication based on text, image and audio are not suitable for several disaster scenarios. In this paper, we present a smartwatch-based application, which utilizes a Deep Learning (DL) model, to recognize a set of predefined arm gestures, maps them into Morse code via vibrations enabling remote communication amongst first responders. The model performance was evaluated by training it using 4,200 gestures performed by 7 subjects (cross-validation) wearing a smartwatch on their dominant arm. Our DL model relies on convolutional pooling and surpasses the performance of existing DL approaches and common machine learning classifiers, obtaining gesture recognition accuracy above 95%. We conclude by discussing the results and providing future directions.


翻译:搜索和救援行动中的高效和快速远程通信可以拯救第一反应者的生命。然而,在以文字、图像和音频为基础的实地通信手段操作时,并不适合于几种灾害情景。在本文中,我们提出了一个基于智能的监视应用程序,它使用深层学习模式,以识别一套预先定义的手臂手势,通过震动将它们映射成摩斯码,使第一反应者之间能够进行远程通信。模型性能通过培训来评价,培训中使用了7个主体(交叉验证)的4 200个手势。我们的DL模型依赖于共聚,超过了现有的DL方法和通用机器学习分类师的性能,获得了95%以上的手势识别精度。我们通过讨论结果和提供未来方向来结束我们的工作。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
26+阅读 · 2020年3月13日
VIP会员
相关资讯
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员