Accurately predicting click-through rates (CTR) under stringent privacy constraints poses profound challenges, particularly when user-item interactions are sparse and fragmented across domains. Conventional cross-domain CTR (CCTR) methods frequently assume homogeneous feature spaces and rely on centralized data sharing, neglecting complex inter-domain discrepancies and the subtle trade-offs imposed by privacy-preserving protocols. Here, we present Federated Cross-Domain CTR Prediction with Large Language Model Augmentation (FedCCTR-LM), a federated framework engineered to address these limitations by synchronizing data augmentation, representation disentanglement, and adaptive privacy protection. Our approach integrates three core innovations. First, the Privacy-Preserving Augmentation Network (PrivAugNet) employs large language models to enrich user and item representations and expand interaction sequences, mitigating data sparsity and feature incompleteness. Second, the Independent Domain-Specific Transformer with Contrastive Learning (IDST-CL) module disentangles domain-specific and shared user preferences, employing intra-domain representation alignment (IDRA) and crossdomain representation disentanglement (CDRD) to refine the learned embeddings and enhance knowledge transfer across domains. Finally, the Adaptive Local Differential Privacy (AdaLDP) mechanism dynamically calibrates noise injection to achieve an optimal balance between rigorous privacy guarantees and predictive accuracy. Empirical evaluations on four real-world datasets demonstrate that FedCCTR-LM substantially outperforms existing baselines, offering robust, privacy-preserving, and generalizable cross-domain CTR prediction in heterogeneous, federated environments.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
17+阅读 · 2023年12月4日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员