The goal of automatic resource bound analysis is to statically infer symbolic bounds on the resource consumption of the evaluation of a program. A longstanding challenge for automatic resource analysis is the inference of bounds that are functions of complex custom data structures. This article builds on type-based automatic amortized resource analysis (AARA) to address this challenge. AARA is based on the potential method of amortized analysis and reduces bound inference to standard type inference with additional linear constraint solving, even when deriving non-linear bounds. A key component of AARA is resource functions that generate the space of possible bounds for values of a given type while enjoying necessary closure properties. Existing work on AARA defined such functions for many data structures such as lists of lists but the question of whether such functions exist for arbitrary data structures remained open. This work answers this questions positively by uniformly constructing resource polynomials for algebraic data structures defined by regular recursive types. These functions are a generalization of all previously proposed polynomial resource functions and can be seen as a general notion of polynomials for values of a given recursive type. A resource type system for FPC, a core language with recursive types, demonstrates how resource polynomials can be integrated with AARA while preserving all benefits of past techniques. The article also proposes the use of new techniques useful for stating the rules of this type system and proving it sound. First, multivariate potential annotations are stated in terms of free semimodules, substantially abstracting details of the presentation of annotations and the proofs of their properties. Second, a logical relation giving semantic meaning to resource types enables a proof of soundness by a single induction on typing derivations.


翻译:暂无翻译

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【论文】图上的表示学习综述
机器学习研究会
15+阅读 · 2017年9月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Memory-Gated Recurrent Networks
Arxiv
12+阅读 · 2020年12月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【论文】图上的表示学习综述
机器学习研究会
15+阅读 · 2017年9月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员