Tensor train (TT) format is a common approach for computationally efficient work with multidimensional arrays, vectors, matrices, and discretized functions in a wide range of applications, including computational mathematics and machine learning. In this work, we propose a new algorithm for TT-tensor optimization, which leads to very accurate approximations for the minimum and maximum tensor element. The method consists in sequential tensor multiplications of the TT-cores with an intelligent selection of candidates for the optimum. We propose the probabilistic interpretation of the method, and make estimates on its complexity and convergence. We perform extensive numerical experiments with random tensors and various multivariable benchmark functions with the number of input dimensions up to $100$. Our approach generates a solution close to the exact optimum for all model problems, while the running time is no more than $50$ seconds on a regular laptop.


翻译:Tensor train (TT) 格式是一种通用的方法,用于计算多面阵列、矢量、矩阵和在包括计算数学和机器学习在内的多种应用中分解函数的高效计算工作。 在这项工作中,我们提出了一个新的TT-tensor优化算法,该算法导致最小和最大振幅元素的非常精确近似值。该方法包括TT-核心的相继增法,并明智地选择最佳候选人。我们提出了该方法的概率解释,并估计了其复杂性和趋同性。我们用随机的计数器和各种多变量基准函数进行了广泛的数字实验,输入维度达到100美元。我们的方法产生了一种接近于所有模型问题准确最佳的解决方案,而运行时间不超过常规膝上50美元秒。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
VIP会员
相关VIP内容
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员