3D object detection using point cloud (PC) data is essential for perception pipelines of autonomous driving, where efficient encoding is key to meeting stringent resource and latency requirements. PointPillars, a widely adopted bird's-eye view (BEV) encoding, aggregates 3D point cloud data into 2D pillars for fast and accurate 3D object detection. However, the state-of-the-art methods employing PointPillars overlook the inherent sparsity of pillar encoding where only a valid pillar is encoded with a vector of channel elements, missing opportunities for significant computational reduction. Meanwhile, current sparse convolution accelerators are designed to handle only element-wise activation sparsity and do not effectively address the vector sparsity imposed by pillar encoding. In this paper, we propose SPADE, an algorithm-hardware co-design strategy to maximize vector sparsity in pillar-based 3D object detection and accelerate vector-sparse convolution commensurate with the improved sparsity. SPADE consists of three components: (1) a dynamic vector pruning algorithm balancing accuracy and computation savings from vector sparsity, (2) a sparse coordinate management hardware transforming 2D systolic array into a vector-sparse convolution accelerator, and (3) sparsity-aware dataflow optimization tailoring sparse convolution schedules for hardware efficiency. Taped-out with a commercial technology, SPADE saves the amount of computation by 36.3--89.2\% for representative 3D object detection networks and benchmarks, leading to 1.3--10.9$\times$ speedup and 1.5--12.6$\times$ energy savings compared to the ideal dense accelerator design. These sparsity-proportional performance gains equate to 4.1--28.8$\times$ speedup and 90.2--372.3$\times$ energy savings compared to the counterpart server and edge platforms.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员