Today mobile users learn and share their traffic observations via crowdsourcing platforms (e.g., Waze). Yet such platforms simply cater to selfish users' myopic interests to recommend the shortest path, and do not encourage enough users to travel and learn other paths for future others. Prior studies focus on one-shot congestion games without considering users' information learning, while our work studies how users learn and alter traffic conditions on stochastic paths in a human-in-the-loop manner. Our analysis shows that the myopic routing policy leads to severe under-exploration of stochastic paths. This results in a price of anarchy (PoA) greater than $2$, as compared to the socially optimal policy in minimizing the long-term social cost. Besides, the myopic policy fails to ensure the correct learning convergence about users' traffic hazard beliefs. To address this, we focus on informational (non-monetary) mechanisms as they are easier to implement than pricing. We first show that existing information-hiding mechanisms and deterministic path-recommendation mechanisms in Bayesian persuasion literature do not work with even (\text{PoA}=\infty). Accordingly, we propose a new combined hiding and probabilistic recommendation (CHAR) mechanism to hide all information from a selected user group and provide state-dependent probabilistic recommendations to the other user group. Our CHAR successfully ensures PoA less than (\frac{5}{4}), which cannot be further reduced by any other informational (non-monetary) mechanism. Besides the parallel network, we further extend our analysis and CHAR to more general linear path graphs with multiple intermediate nodes, and we prove that the PoA results remain unchanged. Additionally, we carry out experiments with real-world datasets to further extend our routing graphs and verify the close-to-optimal performance of our CHAR.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
14+阅读 · 2021年7月20日
Arxiv
11+阅读 · 2018年4月8日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员