Local differential privacy (LDP) has recently emerged as a popular privacy standard. With the growing popularity of LDP, several recent works have applied LDP to spatial data, and grid-based decompositions have been a common building block in the collection and analysis of spatial data under DP and LDP. In this paper, we study three grid-based decomposition methods for spatial data under LDP: Uniform Grid (UG), PrivAG, and AAG. UG is a static approach that consists of equal-sized cells. To enable data-dependent decomposition, PrivAG was proposed by Yang et al. as the most recent adaptive grid method. To advance the state-of-the-art in adaptive grids, in this paper we propose the Advanced Adaptive Grid (AAG) method. For each grid cell, following the intuition that the cell's intra-cell density distribution will be affected by its neighbors, AAG performs uneven cell divisions depending on the neighboring cells' densities. We experimentally compare UG, PrivAG, and AAG using three real-world location datasets, varying privacy budgets, and query sizes. Results show that AAG provides higher utility than PrivAG, demonstrating the superiority of our proposed approach. Furthermore, UG's performance is heavily dependent on the choice of grid size. When the grid size is chosen optimally in UG, AAG still beats UG for small queries, but UG beats AAG for large (coarse-grained) queries.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
26+阅读 · 2020年3月13日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员