We present an implementation and a brief experimental analysis of the deterministic algorithm proposed by Duan et al. (2025) for the Single-Source Shortest Path (SSSP) problem, which achieves the best known asymptotic upper bound in the comparison-addition model, with running time $O(m \log^{2/3} n)$. We provide a faithful C++ implementation of this algorithm, following all structural details described in the original paper, and compare its empirical performance with the classical Dijkstra's algorithm using binary heaps. The experiments were conducted on both synthetic sparse random graphs and real-world road network instances from the DIMACS benchmark. Our results show that, despite its superior asymptotic complexity, the new algorithm presents significantly larger constant factors, making Dijkstra's algorithm faster for all tested sparse graph sizes, including instances with tens of millions of vertices. Our implementation achieves $O(m \log^{2/3} n)$ expected time, due to the use of hash tables, and some possibilities for making it worst-case are being considered. (This is a ongoing work.)
翻译:暂无翻译