Multicore processors constitute the main architecture choice for modern computing systems in different market segments. Despite their benefits, the contention that naturally appears when multiple applications compete for the use of shared resources among cores, such as the last-level cache (LLC), may lead to substantial performance degradation. This may have a negative impact on key system aspects such as throughput and fairness. Assigning the various applications in the workload to separate LLC partitions with possibly different sizes, has been proven effective to mitigate shared-resource contention effects. In this article we propose LFOC, a clustering-based cache partitioning scheme that strives to deliver fairness while providing acceptable system throughput. LFOC leverages the Intel Cache Allocation Technology (CAT), which enables the system software to divide the LLC into different partitions. To accomplish its goals, LFOC tries to mimic the behavior of the optimal cache-clustering solution, which we could approximate by means of a simulator in different scenarios. To this end, LFOC effectively identifies streaming aggressor programs and cache sensitive applications, which are then assigned to separate cache partitions. We implemented LFOC in the Linux kernel and evaluated it on a real system featuring an Intel Skylake processor, where we compare its effectiveness to that of two state-of-the-art policies that optimize fairness and throughput, respectively. Our experimental analysis reveals that LFOC is able to bring a higher reduction in unfairness by leveraging a lightweight algorithm suitable for adoption in a real OS.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员