This paper presents a novel approach to many-vs-many missile guidance using virtual targets (VTs) generated by a Normalizing Flows-based trajectory predictor. Rather than assigning n interceptors directly to m physical targets through conventional weapon target assignment algorithms, we propose a centralized strategy that constructs n VT trajectories representing probabilistic predictions of maneuvering target behavior. Each interceptor is guided toward its assigned VT using Zero-Effort-Miss guidance during midcourse flight, transitioning to Proportional Navigation guidance for terminal interception. This approach treats many-vs-many engagements as many-vs-distribution scenarios, exploiting numerical superiority (n > m) by distributing interceptors across diverse trajectory hypotheses rather than pursuing identical deterministic predictions. Monte Carlo simulations across various target-interceptor configurations (1-6 targets, 1-8 interceptors) demonstrate that the VT method matches or exceeds baseline straight-line prediction performance by 0-4.1% when n = m, with improvements increasing to 5.8-14.4% when n > m. The results confirm that probabilistic VTs enable effective exploitation of numerical superiority, significantly increasing interception probability in many-vs-many scenarios.


翻译:本文提出了一种利用基于归一化流的轨迹预测器生成虚拟目标(VT)的多对多导弹制导新方法。与传统通过武器目标分配算法直接将n枚拦截弹分配给m个物理目标不同,我们提出一种集中式策略,构建n条代表机动目标行为概率预测的VT轨迹。每枚拦截弹在中段飞行期间采用零控脱靶量制导向其分配的VT飞行,并在末端拦截阶段切换为比例导引制导。该方法将多对多交战视为多对分布场景,通过将拦截弹分散至多样化的轨迹假设而非追求相同的确定性预测,从而利用数量优势(n > m)。针对不同目标-拦截弹配置(1-6个目标,1-8枚拦截弹)的蒙特卡洛仿真表明:当n = m时,VT方法的性能与基线直线预测方法相当或超出0-4.1%;当n > m时,性能提升可达5.8-14.4%。结果证实概率性VT能有效利用数量优势,显著提升多对多场景下的拦截概率。

0
下载
关闭预览

相关内容

DeepSeek模型综述:V1 V2 V3 R1-Zero
专知会员服务
116+阅读 · 2月11日
【AAAI2022】自适应的随机平滑防御的鲁棒性认证方法
专知会员服务
26+阅读 · 2021年12月27日
MonoGRNet:单目3D目标检测的通用框架(TPAMI2021)
专知会员服务
18+阅读 · 2021年5月3日
基于 Carsim 2016 和 Simulink的无人车运动控制联合仿真(三)
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
读论文Discriminative Deep Metric Learning for Face and KV
统计学习与视觉计算组
12+阅读 · 2018年4月6日
语义分割中的深度学习方法全解:从FCN、SegNet到DeepLab
炼数成金订阅号
26+阅读 · 2017年7月10日
国家自然科学基金
7+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
VIP会员
相关资讯
基于 Carsim 2016 和 Simulink的无人车运动控制联合仿真(三)
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
读论文Discriminative Deep Metric Learning for Face and KV
统计学习与视觉计算组
12+阅读 · 2018年4月6日
语义分割中的深度学习方法全解:从FCN、SegNet到DeepLab
炼数成金订阅号
26+阅读 · 2017年7月10日
相关基金
国家自然科学基金
7+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
Top
微信扫码咨询专知VIP会员