We investigate whether contemporary multimodal LLMs can assist with grading open-ended calculus at scale without eroding validity. In a large first-year exam, students' handwritten work was graded by GPT-5 against the same rubric used by teaching assistants (TAs), with fractional credit permitted; TA rubric decisions served as ground truth. We calibrated a human-in-the-loop filter that combines a partial-credit threshold with an Item Response Theory (2PL) risk measure based on the deviation between the AI score and the model-expected score for each student-item. Unfiltered AI-TA agreement was moderate, adequate for low-stakes feedback but not for high-stakes use. Confidence filtering made the workload-quality trade-off explicit: under stricter settings, AI delivered human-level accuracy, but also left roughly 70% of the items to be graded by humans. Psychometric patterns were constrained by low stakes on the open-ended portion, a small set of rubric checkpoints, and occasional misalignment between designated answer regions and where work appeared. Practical adjustments such as slightly higher weight and protected time, a few rubric-visible substeps, stronger spatial anchoring should raise ceiling performance. Overall, calibrated confidence and conservative routing enable AI to reliably handle a sizable subset of routine cases while reserving expert judgment for ambiguous or pedagogically rich responses.
翻译:暂无翻译