Artificial intelligence (AI) faces a trifecta of grand challenges: the Energy Wall, the Alignment Problem and the Leap from Narrow AI to AGI. We present SAGI, a Systematic Approach to AGI that utilizes system design principles to overcome the energy wall and alignment challenges. This paper asserts that AGI can be realized through multiplicity of design specific pathways and customized through system design rather than a singular overarching architecture. AGI systems may exhibit diver architectural configurations and capabilities, contingent upon their intended use cases. Alignment, a challenge broadly recognized as AIs most formidable, is the one that depends most critically on system design and serves as its primary driving force as a foundational criterion for AGI. Capturing the complexities of human morality for alignment requires architectural support to represent the intricacies of moral decision-making and the pervasive ethical processing at every level, with performance reliability exceeding that of human moral judgment. Hence, requiring a more robust architecture towards safety and alignment goals, without replicating or resembling the human brain. We argue that system design (such as feedback loops, energy and performance optimization) on learning substrates (capable of learning its system architecture) is more fundamental to achieving AGI goals and guarantees, superseding classical symbolic, emergentist and hybrid approaches. Through learning of the system architecture itself, the resulting AGI is not a product of spontaneous emergence but of systematic design and deliberate engineering, with core features, including an integrated moral architecture, deeply embedded within its architecture. The approach aims to guarantee design goals such as alignment, efficiency by self-learning system architecture.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员