The discovery of community structures in social networks has gained considerable attention as a fundamental problem for various network analysis tasks. However, due to privacy concerns or access restrictions, the network structure is often unknown, thereby rendering established community detection approaches ineffective without costly data acquisition. To tackle this challenge, we present META-CODE, a novel end-to-end solution for detecting overlapping communities in networks with unknown topology via exploratory learning aided by easy-to-collect node metadata. Specifically, META-CODE consists of three steps: 1) initial network inference, 2) node-level community-affiliation embedding based on graph neural networks (GNNs) trained by our new reconstruction loss, and 3) network exploration via community-affiliation-based node queries, where Steps 2 and 3 are performed iteratively. Experimental results demonstrate that META-CODE exhibits (a) superiority over benchmark methods for overlapping community detection, (b) the effectiveness of our training model, and (c) fast network exploration.


翻译:社会网络中社区结构的发现作为各种网络分析任务的一个根本问题,引起了相当的重视,然而,由于隐私问题或准入限制,网络结构往往不为人所知,因此,在没有昂贵的数据获取的情况下,既定的社区检测方法无效。为了应对这一挑战,我们提出了新的端对端解决方案META-CODE,这是通过易于收集的节点元数据辅助的探索性学习,在具有未知地形的网络中发现重叠社区的新的端对端解决方案。具体地说,META-CODE由三个步骤组成:1) 初步网络推断,2) 通过我们新的重建损失所培训的图形神经网络(GNNN)嵌入节点,3) 通过基于社区情感的节点查询进行网络探索,步骤2和步骤3是迭接的。实验结果表明,META-CODE展示了(a) 超越重叠社区检测基准方法的优势,(b) 我们的培训模式的有效性,以及(c) 快速网络探索。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
专知会员服务
61+阅读 · 2020年3月19日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月3日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员