Shariat et al previously investigated the possibility of predicting from clinical data (including Gleason grade and stage) and preoperative biomarkers, which of any pair of patients would suffer recurrence of prostate cancer first. We wished to establish the extent to which predictions of time of relapse from such a model could be improved upon using Bayesian methods. The same dataset was reanalysed with a Bayesian skew-Student mixture model. Predictions were made of which of any pair of patients would relapse first and of the time of relapse. The benefit of using these biomarkers relative to predictions made without them was measured by the apparent Shannon information, using as prior an exponential attrition model of relapse time independent of input variables. Using half the dataset for training and the other half for testing, predictions of relapse time from the strict Cox model gave $-\infty$ nepers of apparent Shannon information (it predicts that relapse can only occur at times when patients in the training set relapsed). Deliberately smoothed predictions from the Cox model gave -0.001 (-0.131 to +0.120) nepers, while the Bayesian model gave +0.109 (+0.021 to +0.192) nepers (mean, 2.5 to 97.5 centiles), being positive with posterior probability 0.993 and beating the blurred Cox model with posterior probability 0.927. These predictions from the Bayesian model thus outperform those of the Cox model, but the overall yield of predictive information leaves scope for improvement of the range of biomarkers in use. The Bayesian model presented here is the first such model for prostate cancer to consider the variation of relapse hazard with biomarker concentrations to be smooth, as is intuitive. It is also the first to be shown to provide more apparent Shannon information than the Cox model or to be shown to provide positive apparent information relative to an exponential prior.


翻译:暂无翻译

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
Top
微信扫码咨询专知VIP会员