Deep learning holds tremendous potential in healthcare for uncovering hidden patterns within extensive clinical datasets, aiding in the diagnosis of various diseases. Parkinson's disease (PD) is a neurodegenerative condition characterized by the deterioration of brain function. In the initial stages of PD, automatic diagnosis poses a challenge due to the similarity in behavior between individuals with PD and those who are healthy. Our objective is to propose an effective model that can aid in the early detection of Parkinson's disease. We employed the VGRF gait signal dataset sourced from Physionet for distinguishing between healthy individuals and those diagnosed with Parkinson's disease. This paper introduces a novel deep learning architecture based on the LSTM network for automatically detecting freezing of gait episodes in Parkinson's disease patients. In contrast to conventional machine learning algorithms, this method eliminates manual feature engineering and proficiently captures prolonged temporal dependencies in gait patterns, thereby improving the diagnosis of Parkinson's disease. The LSTM network resolves the issue of vanishing gradients by employing memory blocks in place of self-connected hidden units, allowing for optimal information assimilation. To prevent overfitting, dropout and L2 regularization techniques have been employed. Additionally, the stochastic gradient-based optimizer Adam is used for the optimization process. The results indicate that our proposed approach surpasses current state-of-the-art models in FOG episode detection, achieving an accuracy of 97.71%, sensitivity of 99%, precision of 98%, and specificity of 96%. This demonstrates its potential as a superior classification method for Parkinson's disease detection.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员