Bayesian predictive inference provides a coherent description of entire predictive uncertainty through predictive distributions. We examine several widely used sparsity priors from the predictive (as opposed to estimation) inference viewpoint. Our context is estimating a predictive distribution of a high-dimensional Gaussian observation with a known variance but an unknown sparse mean under the Kullback-Leibler loss. First, we show that LASSO (Laplace) priors are incapable of achieving rate-optimal performance. This new result contributes to the literature on negative findings about Bayesian LASSO posteriors. However, deploying the Laplace prior inside the Spike-and-Slab framework (for example with the Spike-and-Slab LASSO prior), rate-minimax performance can be attained with properly tuned parameters (depending on the sparsity level sn). We highlight the discrepancy between prior calibration for the purpose of prediction and estimation. Going further, we investigate popular hierarchical priors which are known to attain adaptive rate-minimax performance for estimation. Whether or not they are rate-minimax also for predictive inference has, until now, been unclear. We answer affirmatively by showing that hierarchical Spike-and-Slab priors are adaptive and attain the minimax rate without the knowledge of sn. This is the first rate-adaptive result in the literature on predictive density estimation in sparse setups. This finding celebrates benefits of fully Bayesian inference.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年10月28日
Arxiv
0+阅读 · 2023年10月27日
Arxiv
18+阅读 · 2022年11月21日
Arxiv
14+阅读 · 2018年5月15日
Arxiv
27+阅读 · 2017年12月6日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
0+阅读 · 2023年10月28日
Arxiv
0+阅读 · 2023年10月27日
Arxiv
18+阅读 · 2022年11月21日
Arxiv
14+阅读 · 2018年5月15日
Arxiv
27+阅读 · 2017年12月6日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员