Dense prediction tasks are common for 3D point clouds, but the inherent uncertainties in massive points and their embeddings have long been ignored. In this work, we present CUE, a novel uncertainty estimation method for dense prediction tasks of 3D point clouds. Inspired by metric learning, the key idea of CUE is to explore cross-point embeddings upon a conventional dense prediction pipeline. Specifically, CUE involves building a probabilistic embedding model and then enforcing metric alignments of massive points in the embedding space. We demonstrate that CUE is a generic and effective tool for dense uncertainty estimation of 3D point clouds in two different tasks: (1) in 3D geometric feature learning we for the first time obtain well-calibrated dense uncertainty, and (2) in semantic segmentation we reduce uncertainty`s Expected Calibration Error of the state-of-the-arts by 43.8%. All uncertainties are estimated without compromising predictive performance.


翻译:3D点云的频繁预测任务很常见,但大型点及其嵌入的内在不确定性长期以来一直被忽视。在这项工作中,我们介绍了三D点云密集预测任务的新颖的不确定性估计方法CUE。在光学学习的启发下,CUE的关键想法是探索将交叉点嵌入常规密集预测管道。具体地说,CUE涉及建立一个概率嵌入模型,然后对嵌入空间的大型点进行量性调整。我们证明,CUE是两种不同任务对3D点云进行密集不确定性估计的通用有效工具:(1) 在3D几何特征学中,我们第一次获得精确的密度不确定性,(2) 在语义分化中,我们将不确定性的预测“状态的校准错误”减少43.8%。所有不确定性都是在不影响预测性能的情况下估算的。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关VIP内容
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员