In the metric distortion problem there is a set of candidates and a set of voters, all residing in the same metric space. The objective is to choose a candidate with minimum social cost, defined as the total distance of the chosen candidate from all voters. The challenge is that the algorithm receives only ordinal input from each voter, in the form of a ranked list of candidates in non-decreasing order of their distances from her, whereas the objective function is cardinal. The distortion of an algorithm is its worst-case approximation factor with respect to the optimal social cost. A series of papers culminated in a 3-distortion algorithm, which is tight with respect to all deterministic algorithms. Aiming to overcome the limitations of worst-case analysis, we revisit the metric distortion problem through the learning-augmented framework, where the algorithm is provided with some prediction regarding the optimal candidate. The quality of this prediction is unknown, and the goal is to evaluate the performance of the algorithm under a accurate prediction (known as consistency), while simultaneously providing worst-case guarantees even for arbitrarily inaccurate predictions (known as robustness). For our main result, we characterize the robustness-consistency Pareto frontier for the metric distortion problem. We first identify an inevitable trade-off between robustness and consistency. We then devise a family of learning-augmented algorithms that achieves any desired robustness-consistency pair on this Pareto frontier. Furthermore, we provide a more refined analysis of the distortion bounds as a function of the prediction error (with consistency and robustness being two extremes). Finally, we also prove distortion bounds that integrate the notion of $\alpha$-decisiveness, which quantifies the extent to which a voter prefers her favorite candidate relative to the rest.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
19+阅读 · 2021年2月4日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员