"Treatment-confounder feedback" is the central complication to resolve in longitudinal studies, to infer causality. The existing frameworks for identifying causal effects for longitudinal studies with discrete repeated measures hinge heavily on assuming that time advances in discrete time steps or treatment changes as a jumping process, rendering the number of "feedbacks" finite. However, medical studies nowadays with real-time monitoring involve functional time-varying outcomes, treatment, and confounders, which leads to an uncountably infinite number of feedbacks between treatment and confounders. Therefore more general and advanced theory is needed. We generalize the definition of causal effects under user-specified stochastic treatment regimes to longitudinal studies with continuous monitoring and develop an identification framework, allowing right censoring and truncation by death. We provide sufficient identification assumptions including a generalized consistency assumption, a sequential randomization assumption, a positivity assumption, and a novel "intervenable" assumption designed for the continuous-time case. Under these assumptions, we propose a g-computation process and an inverse probability weighting process, which suggest a g-computation formula and an inverse probability weighting formula for identification. For practical purposes, we also construct two classes of population estimating equations to identify these two processes, respectively, which further suggest a doubly robust identification formula with extra robustness against process misspecification. We prove that our framework fully generalize the existing frameworks and is nonparametric.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
13+阅读 · 2021年5月25日
Arxiv
49+阅读 · 2021年5月9日
Arxiv
20+阅读 · 2021年2月28日
Arxiv
19+阅读 · 2019年4月5日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
13+阅读 · 2021年5月25日
Arxiv
49+阅读 · 2021年5月9日
Arxiv
20+阅读 · 2021年2月28日
Arxiv
19+阅读 · 2019年4月5日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员