We present a novel method for the interactive construction and rendering of extremely large molecular scenes, capable of representing multiple biological cells in atomistic detail. Our method is tailored for scenes, which are procedurally constructed, based on a given set of building rules. Rendering of large scenes normally requires the entire scene available in-core, or alternatively, it requires out-of-core management to load data into the memory hierarchy as a part of the rendering loop. Instead of out-of-core memory management, we propose to procedurally generate the scene on-demand on the fly. The key idea is a positional- and view-dependent procedural scene-construction strategy, where only a fraction of the atomistic scene around the camera is available in the GPU memory at any given time. The atomistic detail is populated into a uniform-space partitioning using a grid that covers the entire scene. Most of the grid cells are not filled with geometry, only those are populated that are potentially seen by the camera. The atomistic detail is populated in a compute shader and its representation is connected with acceleration data structures for hardware ray-tracing of modern GPUs. Objects which are far away, where atomistic detail is not perceivable from a given viewpoint, are represented by a triangle mesh mapped with a seamless texture, generated from the rendering of geometry from atomistic detail. The algorithm consists of two pipelines, the construction-compute pipeline, and the rendering pipeline, which work together to render molecular scenes at an atomistic resolution far beyond the limit of the GPU memory containing trillions of atoms. We demonstrate our technique on multiple models of SARS-CoV-2 and the red blood cell.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年5月20日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员