Private large language model (LLM) inference based on cryptographic primitives offers a promising path towards privacy-preserving deep learning. However, existing frameworks only support dense LLMs like LLaMA-1 and struggle to scale to mixture-of-experts (MoE) architectures. The key challenge comes from securely evaluating the dynamic routing mechanism in MoE layers, which may reveal sensitive input information if not fully protected. In this paper, we propose CryptoMoE, the first framework that enables private, efficient, and accurate inference for MoE-based models. CryptoMoE balances expert loads to protect expert routing information and proposes novel protocols for secure expert dispatch and combine. CryptoMoE also develops a confidence-aware token selection strategy and a batch matrix multiplication protocol to improve accuracy and efficiency further. Extensive experiments on DeepSeekMoE-16.4B, OLMoE-6.9B, and QWenMoE-14.3B show that CryptoMoE achieves $2.8\sim3.5\times$ end-to-end latency reduction and $2.9\sim4.3\times$ communication reduction over a dense baseline with minimum accuracy loss. We also adapt CipherPrune (ICLR'25) for MoE inference and demonstrate CryptoMoE can reduce the communication by up to $4.3 \times$. Code is available at: https://github.com/PKU-SEC-Lab/CryptoMoE.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员