Commercial off-the-shelf (COTS) Global Navigation Satellite System (GNSS) receivers face significant limitations under high-dynamic conditions, particularly in high-acceleration environments such as those experienced by launch vehicles. These performance degradations, often observed as discontinuities in the navigation solution, arise from the inability of traditional tracking loop bandwidths to cope with rapid variations in synchronization parameters. Software-Defined Radio (SDR) receivers overcome these constraints by enabling flexible reconfiguration of tracking loops; however, manual tuning involves a complex, multidimensional search and seldom ensures optimal performance. This work introduces a genetic algorithm-based optimization framework that autonomously explores the receiver configuration space to determine optimal loop parameters for phase, frequency, and delay tracking. The approach is validated within an SDR environment using realistically simulated GPS L1 signals for three representative dynamic regimes -guided rocket flight, Low Earth Orbit (LEO) satellite, and static receiver-processed with the open-source GNSS-SDR architecture. Results demonstrate that evolutionary optimization enables SDR receivers to maintain robust and accurate Position, Velocity, and Time (PVT) solutions across diverse dynamic conditions. The optimized configurations yielded maximum position and velocity errors of approximately 6 m and 0.08 m/s for the static case, 12 m and 2.5 m/s for the rocket case, and 5 m and 0.2 m/s for the LEO case.
翻译:暂无翻译