In this paper, we present findings from an semi-experimental exploration of rater diversity and its influence on safety annotations of conversations generated by humans talking to a generative AI-chat bot. We find significant differences in judgments produced by raters from different geographic regions and annotation platforms, and correlate these perspectives with demographic sub-groups. Our work helps define best practices in model development -- specifically human evaluation of generative models -- on the backdrop of growing work on sociotechnical AI evaluations.


翻译:在本文中,我们介绍了半实验性地探索比率多样性及其对人类与基因型AI-Chat机器人交谈产生的对话的安全说明的影响的结果。我们发现不同地理区域和批注平台的评分与不同地理区域和批注平台的评分有重大差异,并将这些观点与人口分组联系起来。我们的工作有助于确定在社会技术AI评价工作日益增加的背景下,在模型开发 -- -- 特别是人类对基因化模型的评估 -- -- 方面的最佳做法。

0
下载
关闭预览

相关内容

VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
An Overview on Machine Translation Evaluation
Arxiv
14+阅读 · 2022年2月22日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员