In submodular $k$-partition, the input is a non-negative submodular function $f$ defined over a finite ground set $V$ (given by an evaluation oracle) along with a positive integer $k$ and the goal is to find a partition of the ground set $V$ into $k$ non-empty parts $V_1, V_2, ..., V_k$ in order to minimize $\sum_{i=1}^k f(V_i)$. Narayanan, Roy, and Patkar (Journal of Algorithms, 1996) designed an algorithm for submodular $k$-partition based on the principal partition sequence and showed that the approximation factor of their algorithm is $2$ for the special case of graph cut functions (subsequently rediscovered by Ravi and Sinha (Journal of Operational Research, 2008)). In this work, we study the approximation factor of their algorithm for three subfamilies of submodular functions -- monotone, symmetric, and posimodular, and show the following results: 1. The approximation factor of their algorithm for monotone submodular $k$-partition is $4/3$. This result improves on the $2$-factor achievable via other algorithms. Moreover, our upper bound of $4/3$ matches the recently shown lower bound under polynomial number of function evaluation queries (Santiago, IWOCA 2021). Our upper bound of $4/3$ is also the first improvement beyond $2$ for a certain graph partitioning problem that is a special case of monotone submodular $k$-partition. 2. The approximation factor of their algorithm for symmetric submodular $k$-partition is $2$. This result generalizes their approximation factor analysis beyond graph cut functions. 3. The approximation factor of their algorithm for posimodular submodular $k$-partition is $2$. We also construct an example to show that the approximation factor of their algorithm for arbitrary submodular functions is $\Omega(n/k)$.


翻译:暂无翻译

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
专知会员服务
51+阅读 · 2020年12月14日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员