The surge of e-commerce reviews has presented a challenge in manually annotating the vast volume of reviews to comprehend their underlying aspects and sentiments. This research focused on leveraging weakly supervised learning to tackle aspect category learning and the sentiment classification of reviews. Our approach involves the generation of labels for both aspects and sentiments, employing the Snorkel framework of WSL, which incorporates aspect terms, review sentiment scores, and review ratings as sources of weak signals. This innovative strategy significantly reduces the laborious labeling efforts required for processing such extensive datasets. In this study, we deployed hybrid models, namely BiLSTM, CNN-BiLSTM, and CNN-LSTM, which harness multiple inputs, including review text, aspect terms, and ratings. Our proposed model employs two distinct loss functions: Binary Cross Entropy with Sigmoid Activation for Multi-Label Classification, enabling us to learn aspect Labels such as Quality, Usability, Service, Size, and Price, and Categorical Cross Entropy with Softmax Activations for Multi-Class Classification. Subsequently, we meticulously evaluate the performance metrics of these three implemented models, including Macro F1 score and Macro Precision. CNN & Bi-LSTM model attained 0.78 and 0.79 F1 scores on aspect and sentiment identification, respectively. The outcomes of this research are poised to make a substantial contribution to e-commerce platforms, offering an efficient and automated means to label and analyze vast troves of user reviews.


翻译:暂无翻译

0
下载
关闭预览

相关内容

开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年2月8日
Arxiv
18+阅读 · 2021年3月16日
VIP会员
相关VIP内容
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员